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Electromagnetic Field and Transmission
Characteristics of a Parallel Two-Wire
Line Covered with a Three-Layer Media

Yahachi Kuboyama, Member, IEEE, Tsuneo Shibuya, Member, IEEE, and Risaburo Sato, Life Fellow, IEEE

Abstract—Electromagnetic field and transmission characteris-
tics of a parallel two-wire line (PTWL) covered with a three-layer
media were analyzed. It becomes clear that the PTWL mode
will strongly couple to the natural HE,,, or EH;,, modes. At
the resonance frequencies, most of the electromagnetic energy
is stored in medium II region, while propagation takes place in
both medium II and III. Off resonance, most of the energy is
concentrated close to the PTWL. Numerical results are in good
agreement with experimental results. Such a line could possibly
be used as a dielectric tube antenna or, alternatively, as a band
elimination filter and so on.

Index Terms—electromagnetic field, mode coupling, transmis-
sion characteristics, dielectric tube waveguide.

1. INTRODUCTION

HEN a PTWL covered with concentric cylindrical

dielectric media is excited by a balanced mode, the
TEM mode of the PTWL couples strongly to the hybrid
dipole mode of the surrounding dielectric media at frequencies
where the HEq,, or EHq,, modes exist in the dielectric
media itself. It has been confirmed experimentally that the
transmission loss becomes very large and that the propagation
constant for this type of line varies discontinuously at these
frequencies [1], [2]. The PTWL and the Cylindrical dielectric
waveguides from which it is composed have been investigated
in detail respectively by various authors [3]-[6]. But there
have been few analyses on the PTWL covered with multi-
layered dielectric media that combine both types of lines
[71, [8]. Considering the theoretical analysis of this type of
the line, it is necessary to consider the axial components
of the field at higher frequencies where the hybrid dipole
modes in the surrounding media exist [9]-[11]. We have
reported the transmission theory for these lines and obtained
the propagation constants to a good approximation using the
Fourier expanded current distribution on the PTWL over
the angular coordinate 6 [12]. However, the analysis of the
electromagnetic field of these lines has not yet been carried
out with sufficient rigor since they have complex boundary
conditions that make it difficult to obtain the complete solution.
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The purpose of this paper is to investigate the electro-
magnetic fields and transmission characteristics of these lines
that have peculiar frequency characteristics. They have sharp
transmission loss characteristics, similar to a resonance curve,
at frequencies where the natural propagation modes of the
surrounding media exist. These transmission characteristics
depend not only on the shape, the size, and the permittivity
of the surrounding dielectrics but, also on the shape and
size of the PTWL and the relative position between the line
and the surrounding media. When considering the practical
applications for such a line, it becomes clear that a full field
analysis is required together with a theoretical analysis of
its peculiar transmission characteristics. Therefore, field plots
over the cross-section of the line, the electromagnetic energy
distribution in each region of the medium, the transmitted
energy, and the transmission loss characteristics are analyzed
using the mode-matching technique. We have analyzed a
PTWL covered with a three-layer dielectric media as shown in
Fig. 1. As a result, it becomes apparent that the TEM mode of
the PTWL mode couples strongly to the hybrid dipole mode
of the surrounding medium, at frequencies where the natural
hybrid dipole modes exists in the dielectric media itself. Tt is
also clear that a lot of energy is stored in regions II and I
at these frequencies. Alternatively, the transmission power is
concentrated near the PTWL, in region I, at all frequencies
other than those of the natural modes. It should therefore be
possible to excite the HFE1; mode by the TEM mode of the
PTWL, thus offering the possibility of using this type of line
as a new type of dielectric antenna or microwave circuit. The
numerical results for the radial dependence of the fields in
medium II and the transmission loss characteristics are in good
agreement with the experimental results.

II. FIELD COMPONENTS

Let us consider a PTWL covered with a three-layer dielec-
tric media as shown in Fig. 1(a). In this paper, the PTWL is
modeled as an equivalent line of thin conductors with the width
of 2d as shown in Fig. 1(b) [12]. Each region is assumed to be
a lossless insulator with the free space magnetic permeability
Jto. The permittivity of the first and second layers are ¢,1¢€g
and e,2¢q, respectively, and the third layer is taken as €p.

A cylindrical coordinate system using 7,0,z is chosen
with the z axis lying alongside the transmission line. The
z and time dependences are given by exp(—jhz + jwt),
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(a) Experimental line

Fig. 1. Cross-section of the PTWL with a three-layer media.

where w is the angular frequency and h is the propagation
constant which is determined by the boundary conditions.
The transmission mode of the PTWL is assumed to be the
balanced mode. The currents £/ of the thin conductors of the
equivalent line are equal and opposite to each other. Therefore,
the electromagnetic fields are symmetrical about the axis of
f = £7/2. The currents of each thin conductor on the radius
r = ro are Fourier expanded over the angular coordinate 6.
The electromagnetic fields can be expressed as a summation of
the infinite series of a Bessel function. The z component of the
field at each region satisfies the wave equation in cylindrical
coordinates. At region I' 0 <r <rg,

E, = E anodn(A1r) - cos né - F,

(1a)
n=1
H.o = Z cnoJn(A17) - sin nf - F. (1b)
n=1
At region I rg<r<ry,
o0
Ea =Y [anJa(Mr) + bu No(Mir)] - cos né - F,
n=1
(2a)
Ho =Y [en1dn(Mar) + dn1No(Arr)] - sin nf - F.
n=1
(2b)
At region II r1 <7 <7y,
E.» = Z[anZJn()‘Z'r) + bn2Nn(Aor)] - cos nf - F,
n=1
(3a)
oo
Hay =Y [en2dn(Xar) + dnaNo(Aar)] - sin nf - F.
n=1

(3b)

(b) Equivalent line

At region III 79 <7 <7,

(o]
E.; = Z 0n3Kn(Asr) - cos nb - F,

(4a)
n=1
H.y =Y cnsKn(Asr) -sinnb - F. (4b)
n=1
Where,
F = exp(—jhz + jwt),
A =k} — B2,
Ay =k3 — B2,
’\g = h2 - k§7
K =w’pe,
n=1,3,5-. (5)

Jn, N, are Bessel functions of order n and K,, is a
modified Hankel function of order n. For A% — k2> 0, the
fields in the regions I and I’ are obtained by replacing the
Bessel function J,, (A7) and N, (A1r) by the modified Bessel
function I,,(vh? — k%r) and K,(vh? — k2r).

If the width of the strip is very small compared to the
wavelength and the two conductors are sufficiently separated,
the current distribution on the infinitely long strip is the same
as the known electromagnetic surface charge distribution over
the strip [12]. The current distribution on the strip is therefore
assumed to be as follows:

+249 .
) —————— (on the stri
i) =4 wT—omp
0 (elsewhere)
= Zz’ncosnb’(n=1,3,5,"')y (6)
n=1
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where,
2 2 +8o
e (2 [ e
m —8q
1

d . jal
90 =0 = 75
7o (2wey d)
in = current expansion coefficient of order n.

The electromagnetic field is expanded in terms of twelve
coefficients. Boundary conditions require continuity of all
tangential components of the field, except for Hy, which is
discontinuous over the strip current. Once the latter is Fourier
expanded over the angular coordinate ¢, mode-matching tech-
niques can be easily applied. If the current distribution is
prescribed (as (6)), the current expansion coefficients are
known and we obtain eight equations in the eight unknown
field coefficients, for each mode. By setting the linear system
determinant equal to zero, the modal relation is obtained as
follows:

(€r10% — €,9)(W? + €,02%) (v? — u?)(w? + 22)P2n?
—n?[(v? — u?)(er10? — €2u?)
(WY Py — €922 Ro) (W2 Py — 22R,)
+ (W + 22) (w2 + €r92%) (V2 X, P + 42 Q)
(610" 20 Pr + 20" Qy)
+ 86T2u2z2(w2 + 22)(er1v2 - ergug)/wg]
+ [6r1v2Zn(w2YnPn - ezan)
+ 6,0u? (WY, Qn — €:22°8,)]
(v X (WY, P, — 22 R,,)

+ 6 (WY, Qn — 228,)] = 0 )
where,
u=Mr11, U= ATy,
w=Agry, 2Z=A3T2,
Zn(u) = Jp(u) + 4, Ny, (u),
_ud) (u) _ 2K (2)
A= Jn(u) e = K,(2) 7
_uZ,,(u)
Zn - Zn(u) i

Py, = Jp(v)Np(w) — Jn(w)Nn(u),

Qn = v[Jn(w)Ny,(v) = T3 (v) Nn(w)],

Ry, = w[Jy,(w) N (v) = Jn(v) Ny (w)],

Sn = vw[J}, (v)N] (w) — J, (w)N;,(v)]. 8)
For r = 7o. and 6 = (. the tangential component of the

electrical field (E., Eg) on the metal being equal to zero, we
obtain:

Tl > Jn (o) : _
5 Z {1 + ——————AnNn(uo) }Jn(uo)Nn(UO)zn cosnf = 0.

&)
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Fig. 2. Propagation constants of a PTWL covered with a three-layer media.

A,, can be obtained from (7) for each mode. We can obtain
the propagation constant approximately by solving (9).

The cross-section of the line, the parameters of which
have been used for the experimental and theoretical analysis,
is as shown in Fig. 1. The corresponding transmission line
dimensions are; d = 0.0005, o = 0.00435, 71 = 0.0061,ry =
0.1125. The mediums I, II, and III are polyethylene (e,; =
2.25), water (.0 = 79), and free space (e¢,3 = 1), respectively.
It is assumed that the three-layer media are lossless. Plots of
the calculated propagation constants are presented in Fig. 2,
where Ag is the free space wavelength and A, is the equivalent
wavelength for the transmission line.

The solid line indicates the propagation constants for a
PTWL covered with the three-layer media. Near frequen-
cies where the HFq,, FHy, and HF,5 modes exist in the
surrounding dielectric media, the propagation constants vary
discontinuously and approach those of the three-layer diclec-
tric waveguide modes. It is considered that a radial resonance
takes place between the boundaries of the media at these
frequencies. Hereafter, this type of mode is referred to as
a resonant mode, which is near in frequency to the HEi,,
or EH,,, modes of the three-layer media. Other modes are
referred to as nonresonant modes.

HI. TwWO-DIMENSIONAL FIELD PLOTS

If the propagation constants are obtained by solving (9) and
the current expansion coefficients are known, the field coef-
ficients of (1)—(4) are determined by imposing the conditions
of r = rg,r = 71,7 = rg. The relative amplitude of the
electromagnetic fields for each mode are determined by the
current expansion coefficient A,,. Axial and radial dependence
of the fields can be easily obtained [13]. For regions near
r = 79, the electromagnetic field contains a large number of
higher-order field components in order to satisfy the boundary
condition on the conductors. For regions where r is grater than
r9, the field become nearly equal natural hybrid dipole mode,
because of the higher-order fields diminish rapidly.

In order to describe the particular transmission mode of this
line, two-dimensional field plots are described that compare
the resonant mode and the nonresonant mode. The numerical
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(a) Nonresonant mode
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(b} Resonant mode

E

Transverse field near the PTWL.

Fig. 3.

results are shown in Figs. 3-5. To make it easier to understand
the field plots, the cross-section is divided into two areas: one
is the near field of the PTWL, and the other is the field where
7> 1. Usually, electromagnetic field line separation is plotted
in proportion to the electromagnetic field intensity. However,
it is not possible to apply this method to the hybrid mode
because of the fields having an axial component. Therefore,
the separation of the field lines does not always indicate the
fields strength. The line separation is chosen that describes the
total configuration of the fields as far as it is possible. As a
Consequence, the field lines seem to concentrate at a certain
point, but in fact do not coincide; actually they close on the
different axial point.

An example of the transverse field near PTWL for the
resonant mode and for the nonresonant one are shown in Fig.
3. Regardless of the resonant mode or the nonresonant one, the
near field of the PTWL is nearly equal to that for the TEM
mode, and, in the transverse plane, the electric field lines are
nearly orthogonal to the magnetic field lines. It is observed
in Fig. 3 that the electromagnetic fields concentrate to the
PTWL. Orthogonality of the electromagnetic field lines in the
transverse plane decreases near r = r;, since the existence
of the axial component for the electromagnetic field. The
clectromagnetic field lines of resonant mode are more different

100 MHz

£} 2
{e) Nonresonant mode

| 110 M (HE)

{b) Resonant mode

E

Transverse field outside of radius r;.

Fig. 4.

from TEM mode since the resonant modes are more influenced
by the natural dipole mode.

The field plot of v > r, for which correspond to HE;; and
EHy; modes are shown in Fig. 4 and Fig. 5, respectively.
It shows the transition of the electromagnetic field lines from
nonresonant mode to resonant mode, alternately. The electric
field lines and magnetic filed lines are not always orthogonal
to each other on the transverse plane; this is because of the
existence of an axial field component. It is observed in Fig.
4(a) and Fig. 5(a) that the field lines for nonresonant mode
concentrate near the PTWL, and spread out electromagnetic
field lines into medium II and I are small. It may be said that
the nonresonant modes are the forced mode by the existence of
the PTWL. As shown in Fig. 4(b) and Fig. 5(b), the resonant
modes are caused by the resonance between the PTWL and
natural dipole modes. They are very similar to those for the
natural H F; and F'H1; mode, which are shown in Appendix
A for the HE1; mode. It can also be seen that the field lines
for the resonant modes are more spread out into medium II
and III than they are for the nonresonant modes.

IV. RADIAL DEPENDENCE OF ELECTRIC FIELDS

Numerical and experimental results showing the radial
dependence of the axial component and azimuthal component
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160 MHz

{a) Nonresonant mode

192 MHz (EHi1)

x =L
(b} Resonant mode

E

Fig. 5. Transverse field outside of radius ri.

of the electric fields, in medium II, are shown in Figs. 6 and
7. The azimuthal component of the electric fields, in medium
II, is normalized with respect to the maximum azimuthal
electric field strength. The electric field strength is measured
by inserting the small dipole antenna from the surface into
medium II, between the angles § = 80° — 90°. The relative
magnitude of the axial component and azimuthal component
of the fields vary dramatically with 6, as found from (1)-(4);
for this reason, the numerical value of the axial component of
the fields normalized to the measured relative magnitude of
the axial component and the azimuthal component.

For nonresonant modes, the fields decrease rapidly as the ra-
dius increases. Conversely, for the resonance modes, the fields
are nearly equal to the T Fy; and £ H;; of the natural mode
of the media, and a radial standing wave is clearly observed.
The level of the electric field strength for resonant modes are
much greater than those for nonresonant modes. These results
show that a substantial amount of the electromagnetic field
spreads into medium IT and that a resonance is present.

V. TRANSPORT OF ENERGY

In order to determine the particular transmission characteris-
tics, contour plots of the transmission power density are shown
in Figs. 8 and 9. Each separation between lines represents a
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4-dB difference in the transmission power density, which has
been normalized to the maximum transmission power density
at # = 0. The transmission power in the PTWL region is
concentrated to the PTWL neighborhood regardless of whether
the mode is tesonant or not. However, the numerical results
show that the degree to which the power is concentrated is
less for resonant modes.

The transmission power density outside of medium I shows
that the transmission power is diverging for resonant modes,
and there are regions where the Poynting vector is negative.
For nonresonant modes, the transmission power is concen-
trated more strongly near the PTWL. However, for resonant
modes, most of the transmitted energy propagates in medium
II (see Fig. 9 and Appendix B).
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The ratio of the transported energy in each region normal-
ized to the total transported energy in the line is shown in Fig.
10, which shows that it varies greatly depending on whether
the mode is resonant or nonresonant. For nonresonant modes,
the energy propagates mainly as a TEM mode in region I.
Alternatively, for resonant modes, energy transportation in
region I is small; in fact, most of the energy propagates in
regions II and III. A negative Poynting vector in regions II
and III is observed that is mostly due to the resonant HE';
mode. The ratio of the transmitted energy in each region varies
dramatically near the turning point of the resonance frequency.

The energy storage in each region normalized to the total
transported energy in the line is shown in Fig. 11. For
nonresonant modes, the electromagnetic energy is concentrated
around the PTWL, and almost all the electromagnetic energy

100 MHz

(N

0 fo £
(a) Nonresonant mode

\mm (HE11)

1
0 () 3]
(b) Resonant mode
----tZero Poynting vector
--------- ‘Negative Poynting vector

Fig. 8. Contours of the transmission power density near the PTWL.

is in region 1. For resonant modes, the electromagnetic field
becomes nearly equal to the natural hybrid dipole mode.
Therefore, a lot of energy is spread out into regions II and 1.
Note, that the rate of this spreading is largest for the H F;
mode. For higher-order modes, more energy is concentrated
in medium IT and less is stored in region III.

VI. TRANSMISSION LOSS CHARACTERISTICS

The attenuation coefficient of the dielectric-tube waveguide
has been determined for TM and TE modes by Jakes [5] and,
for n = 1 hybrid modes, by Unger [6]. This was achieved by
letting the permittivity of the tube assume a complex value
and by solving the characteristic equation for the complex
propagation coefficient.

In this work, the well known perturbation method is used to
derive expressions for the attenuation coefficient. In cases of
low-loss transmission, the attenuation cocfficient is given by

3 3
a:%:%ZNi M p (10)
n=1 n=1
where
N; wtané,W,
P, the transport of energy in region ;
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Fig. 9. Contours of the transmission power density outside of radius ry.
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Fig. 10. Transport of energy in each region,

W; the energy storage in region 3

The line has a relatively large loss tan 62(=~0.03) [14] in
medium II. Therefore, it is considered that the measured trans-
mission loss for the PTWL is mainly due to this parameter.
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The numerical result of transmission loss characteristic is in
good agreement with the experimental results as shown in Fig.
12. The reason why the peak of the measured loss is not as
large as the numerical value is that the resonant quality factor
() is linked to the large loss of medium II. () is considered
as being

27 f(average total stored energy)

Q an

average power dissipated.

VII. CONCLUSION

The numerical results for the transmission characteristics
of a PTWL covered with a three-layer media are in good
agreement with experimental results. At frequencies where the
propagation constants of the PTWL intersect with the hybrid
dipole mode of the three-layer dielectric waveguide modes,
the propagation constants vary discontinuously.

For nonresonant modes, the electromagnetic energy is con-
centrated near the PTWL and almost all of the energy prop-
agates in medium I. For resonant modes, the natural hybrid
dipole modes are spreads out to the region II and III and most
of the transported energy mainly propagates in mediums II
and IIL.

The H E;; mode that has the most diverging electromag-
netic field could be used as a dielectric tube antenna fed by the
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balanced mode of the PTWL. Alternatively, the configuration
could be used as a band elimination filter.

VIII. APPENDIX A

A. Field Lines for the Natural HFE1, Mode

e tenene,

Fig. 13. Transverese fields of natural H E1 mode for the three-layer media.

B. Transmission Power Density Contour Plots for the Narural
HE,, Mode that Propagates. in the Three-Layer Media
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Fig. 14. Contour of the transmission power density for the natural H Ejq
mode.
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